Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{3a}{2} - \frac{5b}{4} \right)^2 \]
\[ = \left( \frac{3a}{2} \right)^2 - 2\left( \frac{3a}{2} \right)\left( \frac{5b}{4} \right) + \left( \frac{5b}{4} \right)^2 \]
\[ = \frac{9 a^2}{4} - \frac{15ab}{4} + \frac{25 b^2}{16}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x + y) (x2 − xy + y2)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Simplify.
(a + b + c) (a + b − c)
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: (x2 − ay)2
Product of 6a2 – 7b + 5ab and 2ab is ______.
p2q + q2r + r2q is a binomial.
Multiply the following:
`- 100/9 rs; 3/4 r^3s^2`
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`