Advertisements
Advertisements
Question
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Solution
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{3a}{2} - \frac{5b}{4} \right)^2 \]
\[ = \left( \frac{3a}{2} \right)^2 - 2\left( \frac{3a}{2} \right)\left( \frac{5b}{4} \right) + \left( \frac{5b}{4} \right)^2 \]
\[ = \frac{9 a^2}{4} - \frac{15ab}{4} + \frac{25 b^2}{16}\]
APPEARS IN
RELATED QUESTIONS
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(a + b + c) (a + b − c)
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
p2q + q2r + r2q is a binomial.
Multiply the following:
a, a5, a6
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`