Advertisements
Advertisements
Question
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Solution
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{x}{4} - \frac{y}{3} \right)^2 \]
\[ = \left( \frac{x}{4} \right)^2 - 2\left( \frac{x}{4} \right)\left( \frac{y}{3} \right) + \left( \frac{y}{3} \right)^2 \]
\[ = \frac{x^2}{16} - \frac{1}{6}xy + \frac{y^2}{9}\]
APPEARS IN
RELATED QUESTIONS
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
Write the following square of binomial as trinomial: (x2 − ay)2
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`