Advertisements
Advertisements
Question
Write the following square of binomial as trinomial: (x2 − ay)2
Solution
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( x^2 - ay \right)^2 \]
\[ = \left( x^2 \right)^2 - 2 x^2 \left( ay \right) + \left( ay \right)^2 \]
\[ = x^4 - 2 x^2 ay + a^2 y^2\]
APPEARS IN
RELATED QUESTIONS
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Simplify.
(x + y) (x2 − xy + y2)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
p2q + q2r + r2q is a binomial.
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`- 100/9 rs; 3/4 r^3s^2`
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`