Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (x2 − ay)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( x^2 - ay \right)^2 \]
\[ = \left( x^2 \right)^2 - 2 x^2 \left( ay \right) + \left( ay \right)^2 \]
\[ = x^4 - 2 x^2 ay + a^2 y^2\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]