Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (8a + 3b)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( 8a + 3b \right)^2 \]
\[ = \left( 8a \right)^2 + 2\left( 8a \right)\left( 3b \right) + \left( 6b \right)^2 \]
\[ = 64 a^2 + 48ab + 36 b^2\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`