Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (8a + 3b)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( 8a + 3b \right)^2 \]
\[ = \left( 8a \right)^2 + 2\left( 8a \right)\left( 3b \right) + \left( 6b \right)^2 \]
\[ = 64 a^2 + 48ab + 36 b^2\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(x + y) (x2 − xy + y2)
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
Multiply the following:
a, a5, a6
Multiply the following:
`- 100/9 rs; 3/4 r^3s^2`