Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (x + 2)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[\left( x + 2 \right)^2 \]
\[ = x^2 + 2 \times x \times 2 + b^2 \]
\[ = x^2 + 4x + b^2\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(t + s2) (t2 − s)
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Write the following square of binomial as trinomial: (x2 − ay)2
Product of 6a2 – 7b + 5ab and 2ab is ______.