Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (a2b − bc2)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[\left( a^2 b - b c^2 \right)^2 \]
\[ = \left( a^2 b \right)^2 - 2\left( a^2 b \right)\left( b c^2 \right) + \left( b c^2 \right)^2 \]
\[ = a^4 b^2 - 2 a^2 b^2 c^2 + b^2 c^4\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(a2 + 5) (b3 + 3) + 5
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( 3x - \frac{1}{3x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Multiply the following:
a, a5, a6
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`