Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (a2b − bc2)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[\left( a^2 b - b c^2 \right)^2 \]
\[ = \left( a^2 b \right)^2 - 2\left( a^2 b \right)\left( b c^2 \right) + \left( b c^2 \right)^2 \]
\[ = a^4 b^2 - 2 a^2 b^2 c^2 + b^2 c^4\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(t + s2) (t2 − s)
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Write the following square of binomial as trinomial: (x2 − ay)2
Product of 6a2 – 7b + 5ab and 2ab is ______.
Multiply the following:
`- 100/9 rs; 3/4 r^3s^2`