Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( 9a + \frac{1}{6} \right)^2 \]
\[ = \left( 9a \right)^2 + 2\left( 9a \right)\left( \frac{1}{6} \right) + \left( \frac{1}{6} \right)^2 \]
\[ = 81 a^2 + 3a + \frac{1}{36}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Write the following square of binomial as trinomial: (x2 − ay)2
Product of 6a2 – 7b + 5ab and 2ab is ______.
Multiply the following:
a, a5, a6
Multiply the following:
–7st, –1, –13st2