Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( x + \frac{x^2}{2} \right)^2 \]
\[ = x^2 + 2x\left( \frac{x^2}{2} \right) + \left( \frac{x^2}{2} \right)^2 \]
\[ = x^2 + x^3 + \frac{x^4}{4}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Write the following square of binomial as trinomial: (x2 − ay)2
Product of 6a2 – 7b + 5ab and 2ab is ______.
p2q + q2r + r2q is a binomial.
Multiply the following:
a, a5, a6
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`