Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{x}{4} - \frac{y}{3} \right)^2 \]
\[ = \left( \frac{x}{4} \right)^2 - 2\left( \frac{x}{4} \right)\left( \frac{y}{3} \right) + \left( \frac{y}{3} \right)^2 \]
\[ = \frac{x^2}{16} - \frac{1}{6}xy + \frac{y^2}{9}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(x + y) (x2 − xy + y2)
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( 3x - \frac{1}{3x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
Write the following square of binomial as trinomial: (x2 − ay)2
Multiply the following:
`- 100/9 rs; 3/4 r^3s^2`