Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2 \]
\[ = \left( \frac{2a}{3b} \right)^2 + 2$\left( \frac{2a}{3b} \right)$\left( \frac{2b}{3a} \right) + \left( \frac{2b}{3a} \right)^2 \]
\[ = \frac{4 a^2}{9 b^2} + \frac{8}{9} + \frac{4 b^2}{9 a^2}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(t + s2) (t2 − s)
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
p2q + q2r + r2q is a binomial.
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`