Advertisements
Advertisements
Question
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
Solution
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( 9a + \frac{1}{6} \right)^2 \]
\[ = \left( 9a \right)^2 + 2\left( 9a \right)\left( \frac{1}{6} \right) + \left( \frac{1}{6} \right)^2 \]
\[ = 81 a^2 + 3a + \frac{1}{36}\]
APPEARS IN
RELATED QUESTIONS
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(t + s2) (t2 − s)
Simplify.
(a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)
Simplify.
(x + y) (x2 − xy + y2)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]