Advertisements
Advertisements
प्रश्न
Add the following algebraic expression:
\[\frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x, - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]
उत्तर
To add, we proceed as follows:
\[\left( \frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x \right) + \left( - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy \right)\]
\[ = \frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]
\[ = \frac{11}{2}xy - \frac{13}{7}xy + \frac{12}{5}y - \frac{11}{2}y + \frac{13}{7}x - \frac{12}{5}x ( \text { Collecting like terms })\]
\[ = \frac{51}{14}xy - \frac{31}{10}y - \frac{19}{35}x (\text { Combining like terms })\]
APPEARS IN
संबंधित प्रश्न
Simplify combining like terms: 3a - 2b - ab - (a - b + ab) + 3ab + b - a
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
Add: 3mn, − 5mn, 8mn, −4mn
Subtract: (a - b) from (a + b)
Add the following algebraic expression:
\[\frac{2}{3}a, \frac{3}{5}a, - \frac{6}{5}a\]
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
Add: −9y, 11y, 2y
Find the sum of the following expressions
a + 5b + 7c, 2a + 10b + 9c
Add: 2a + b + 3c and `"a" + 1/3"b" + 2/5"c"`
Add:
3a(2b + 5c), 3c(2a + 2b)