Advertisements
Advertisements
प्रश्न
Add the following algebraic expression:
\[\frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x, - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]
उत्तर
To add, we proceed as follows:
\[\left( \frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x \right) + \left( - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy \right)\]
\[ = \frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]
\[ = \frac{11}{2}xy - \frac{13}{7}xy + \frac{12}{5}y - \frac{11}{2}y + \frac{13}{7}x - \frac{12}{5}x ( \text { Collecting like terms })\]
\[ = \frac{51}{14}xy - \frac{31}{10}y - \frac{19}{35}x (\text { Combining like terms })\]
APPEARS IN
संबंधित प्रश्न
Subtract 3xy + 5yz − 7zx from 5xy − 2yz − 2zx + 10xyz.
Simplify combining like terms: 21b − 32 + 7b − 20b
Add: a + b - 3, b - a + 3, a - b + 3
Add: 4x2y, - 3xy2, - 5xy2, 5x2y
Add: x2 - y2 - 1 , y2 - 1 - x2, 1- x2 - y2
Sum of x2 + x and y + y2 is 2x2 + 2y2.
Add the following expressions:
p2 – 7pq – q2 and –3p2 – 2pq + 7q2
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q
What should be added to 3pq + 5p2q2 + p3 to get p3 + 2p2q2 + 4pq?
Translate the following algebraic expressions:
8(m + 5)