Advertisements
Advertisements
प्रश्न
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
उत्तर
Let us consider the following expression: \[\frac{198 \times 198 - 102 \times 102}{96} = \frac{{198}^2 - {102}^2}{96}\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\],we get:
\[\frac{198 \times 198 - 102 \times 102}{96} = \frac{{198}^2 - {102}^2}{96} = \frac{\left( 198 + 102 \right)\left( 198 - 102 \right)}{96}\]
\[\Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = \frac{\left( 198 + 102 \right)\left( 198 - 102 \right)}{96}\]
\[ \Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = \frac{300 \times 96}{96}\]
\[ \Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = 300\]
Thus, the answer is 300.
APPEARS IN
संबंधित प्रश्न
Show that (3x + 7)2 − 84x = (3x − 7)2
Show that (a - b)(a + b) + (b - c) (b + c) + (c - a) (c + a) = 0
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]
Expand the following:
(2x + 3y + 4z)2
On dividing p(4p2 – 16) by 4p(p – 2), we get ______.
Simplify:
(pq – qr)2 + 4pq2r
Simplify:
(s2t + tq2)2 – (2stq)2
Using suitable identities, evaluate the following.
105 × 95