Advertisements
Advertisements
प्रश्न
Show that (a - b)(a + b) + (b - c) (b + c) + (c - a) (c + a) = 0
उत्तर
L.H.S = (a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a)
= (a2 - b2) + (b2 - c2) + (c2 - a2) = 0 = R.H.S
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 197 × 203
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Evaluate the following: 103 × 96
Simplify:
`(7/9 a + 9/7 b)^2 - ab`
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
Expand the following, using suitable identities.
(7x + 5)2
Using suitable identities, evaluate the following.
(1005)2
Perform the following division:
(ax3 – bx2 + cx) ÷ (– dx)