Advertisements
Advertisements
प्रश्न
Show that (a - b)(a + b) + (b - c) (b + c) + (c - a) (c + a) = 0
उत्तर
L.H.S = (a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a)
= (a2 - b2) + (b2 - c2) + (c2 - a2) = 0 = R.H.S
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (79)2 − (69)2
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Simplify the following using the identities: 1.73 × 1.73 − 0.27 × 0.27
Find the following product: (x + 7) (x − 5)
Simplify:
(3x + 2y)2 – (3x – 2y)2
Simplify:
`(7/9 a + 9/7 b)^2 - ab`
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Using suitable identities, evaluate the following.
(52)2
Perform the following division:
(– qrxy + pryz – rxyz) ÷ (– xyz)
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |