Advertisements
Advertisements
प्रश्न
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
उत्तर
Let us consider the following expression: \[\frac{198 \times 198 - 102 \times 102}{96} = \frac{{198}^2 - {102}^2}{96}\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\],we get:
\[\frac{198 \times 198 - 102 \times 102}{96} = \frac{{198}^2 - {102}^2}{96} = \frac{\left( 198 + 102 \right)\left( 198 - 102 \right)}{96}\]
\[\Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = \frac{\left( 198 + 102 \right)\left( 198 - 102 \right)}{96}\]
\[ \Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = \frac{300 \times 96}{96}\]
\[ \Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = 300\]
Thus, the answer is 300.
APPEARS IN
संबंधित प्रश्न
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(2x + 3)(2x – 5)(2x – 6)
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
2p is the factor of 8pq
Multiply the following:
(3x2 + 4x – 8), (2x2 – 4x + 3)
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Simplify:
(x2 – 4) + (x2 + 4) + 16
Simplify:
(pq – qr)2 + 4pq2r
Expand the following, using suitable identities.
(x2y – xy2)2
Expand the following, using suitable identities.
`(2/3x - 3/2y)^2`
Expand the following, using suitable identities.
(a2 + b2)2