Advertisements
Advertisements
प्रश्न
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
उत्तर
(x + y + z) = 9 and (xy + yz + zx) = 26
x2 + y2 + z2 = (x + y + z)2 – 2(xy + yz + zx)
= 92 – 2 × 26
= 81 – 52
= 29
APPEARS IN
संबंधित प्रश्न
Show that `(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2`
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Simplify the following using the identities: 1.73 × 1.73 − 0.27 × 0.27
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
Evaluate the following by using identities:
10013
Expand the following, using suitable identities.
(7x + 5)2