Advertisements
Advertisements
प्रश्न
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
उत्तर
(x + y + z) = 9 and (xy + yz + zx) = 26
x2 + y2 + z2 = (x + y + z)2 – 2(xy + yz + zx)
= 92 – 2 × 26
= 81 – 52
= 29
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
Find the following product: (z2 + 2) (z2 − 3)
Find the following product: (x2 + 4) (x2 + 9)
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(2x + 3)(2x – 5)(2x – 6)
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(4.5a + 1.5b)2 + (4.5b + 1.5a)2
Expand the following, using suitable identities.
(x2y – xy2)2
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Using suitable identities, evaluate the following.
(49)2
Using suitable identities, evaluate the following.
(995)2