Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following product: \[113 \times 87\]
\[\because \frac{113 + 87}{2} = \frac{200}{2} = 100\] therefore, we will write the above product as:
\[113 \times 87\]
\[ = \left( 100 + 13 \right)\left( 100 - 13 \right)\]
\[ = \left( 100 \right)^2 - \left( 13 \right)^2 \]
\[ = 10000 - 169\]
\[ = 9831\]
Thus, the answer is 9831.
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Find the value of x, if 14x = (47)2 − (33)2.
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
By using identity evaluate the following:
73 – 103 + 33
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(ab – c)2 + 2abc
Expand the following, using suitable identities.
(x2 + y2)(x2 – y2)
Carry out the following division:
–121p3q3r3 ÷ (–11xy2z3)