Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following product: \[113 \times 87\]
\[\because \frac{113 + 87}{2} = \frac{200}{2} = 100\] therefore, we will write the above product as:
\[113 \times 87\]
\[ = \left( 100 + 13 \right)\left( 100 - 13 \right)\]
\[ = \left( 100 \right)^2 - \left( 13 \right)^2 \]
\[ = 10000 - 169\]
\[ = 9831\]
Thus, the answer is 9831.
APPEARS IN
संबंधित प्रश्न
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the following product: (3x2 − 4xy) (3x2 − 3xy)
Evaluate the following: 102 × 106
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Simplify:
(x2 – 4) + (x2 + 4) + 16
Using suitable identities, evaluate the following.
47 × 53
Using suitable identities, evaluate the following.
105 × 95
Carry out the following division:
17ab2c3 ÷ (–abc2)
Perform the following division:
(ax3 – bx2 + cx) ÷ (– dx)