Advertisements
Advertisements
प्रश्न
Find the following product: (3x2 − 4xy) (3x2 − 3xy)
उत्तर
Here, we will use the identity \[\left( x - a \right)\left( x - b \right) = x^2 - \left( a + b \right)x + ab\].
\[\left( 3 x^2 - 4xy \right)\left( 3 x^2 - 3xy \right)\]
\[ = \left( 3 x^2 \right)^2 - \left( 4xy + 3xy \right)\left( 3 x^2 \right) + 4xy \times 3xy\]
\[ = 9 x^4 - \left( 12 x^3 y + 9 x^3 y \right) + 12 x^2 y^2 \]
\[ = 9 x^4 - 21 x^3 y + 12 x^2 y^2\]
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 197 × 203
Find the value of x, if 5x = (50)2 − (40)2.
Find the following product: (x2 + 4) (x2 + 9)
Evaluate the following: 34 × 36
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Simplify:
(3x + 2y)2 + (3x – 2y)2
Expand the following, using suitable identities.
`(4/5a + 5/4b)^2`
Expand the following, using suitable identities.
`((2a)/3 + b/3)((2a)/3 - b/3)`
Carry out the following division:
–121p3q3r3 ÷ (–11xy2z3)
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |