Advertisements
Advertisements
प्रश्न
Find the following product: (3x − 4y) (2x − 4y)
उत्तर
Here, we will use the identity \[\left( x - a \right)\left( x - b \right) = x^2 - \left( a + b \right)x + ab\].
\[\left( 3x - 4y \right)\left( 2x - 4y \right)\]
\[ = \left( 4y - 3x \right)\left( 4y - 2x \right) (\text { Taking common - 1 from both parentheses })\]
\[ = \left( 4y \right)^2 - \left( 3x + 2x \right)\left( 4y \right) + 3x \times 2x\]
\[ = 16 y^2 - \left( 12xy + 8xy \right) + 6 x^2 \]
\[ = 16 y^2 - 20xy + 6 x^2\]
APPEARS IN
संबंधित प्रश्न
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
Find the following product: \[\left( x + \frac{1}{5} \right)(x + 5)\]
Evaluate the following: 994 × 1006
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(2x + 3)(2x – 5)(2x – 6)
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Expand the following, using suitable identities.
`(4/5a + 5/4b)^2`
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Expand the following, using suitable identities.
`((2a)/3 + b/3)((2a)/3 - b/3)`
Using suitable identities, evaluate the following.
(52)2