Advertisements
Advertisements
Question
Find the following product: (3x − 4y) (2x − 4y)
Solution
Here, we will use the identity \[\left( x - a \right)\left( x - b \right) = x^2 - \left( a + b \right)x + ab\].
\[\left( 3x - 4y \right)\left( 2x - 4y \right)\]
\[ = \left( 4y - 3x \right)\left( 4y - 2x \right) (\text { Taking common - 1 from both parentheses })\]
\[ = \left( 4y \right)^2 - \left( 3x + 2x \right)\left( 4y \right) + 3x \times 2x\]
\[ = 16 y^2 - \left( 12xy + 8xy \right) + 6 x^2 \]
\[ = 16 y^2 - 20xy + 6 x^2\]
APPEARS IN
RELATED QUESTIONS
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the following product: (2x2 − 3) (2x2 + 5)
Find the following product: \[\left( x + \frac{1}{5} \right)(x + 5)\]
Find the following product: (y2 + 12) (y2 + 6)
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Simplify:
(1.5p + 1.2q)2 – (1.5p – 1.2q)2
Simplify:
(pq – qr)2 + 4pq2r
Expand the following, using suitable identities.
(2x + 9)(2x – 7)
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Perform the following division:
(x3y3 + x2y3 – xy4 + xy) ÷ xy