Advertisements
Advertisements
Question
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Solution
We have,
`((2x)/3 - 2/3)((2x)/3 + (2a)/3) = ((2x)/3)^2 + ((-2)/3 + (2a)/3)(2x)/3 + ((-2)/3 xx (2a)/3)` ...[Using the identity, (x + a)(x + b) = x2 + (a + b)x + ab]
= `(4x^2)/9 + (2a - 2)/3 xx 2/3x - 4/9a`
= `(4x^2)/9 + 4/9(a - 1)x - 4/9a`
APPEARS IN
RELATED QUESTIONS
Show that (a - b)(a + b) + (b - c) (b + c) + (c - a) (c + a) = 0
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Evaluate the following: 35 × 37
Evaluate the following by using identities:
983
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
`(7/9 a + 9/7 b)^2 - ab`
Expand the following, using suitable identities.
(xy + yz)2
Carry out the following division:
51x3y2z ÷ 17xyz