Advertisements
Advertisements
Question
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Solution
We know x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
x3 + y3 + z3 = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) + 3xyz
8x3 – 27y3 – 64z3 = (2x)3 + (– 3y)3 + (– 4z)3
= (2x – 3y – 4z) [(2x)2 + (– 3y)2 + (– 4z)2 – (2x)(– 3y) – (– 3y)(– 4z) – (– 4z)(2x)] + 3(2x)(– 3y)(– 4z)
= 0 (4x2 + 9y2 + 16z2 + 6xy – 12yz + 8xz) + 72xyz
= 72xyz
8x3 – 27y3 – 64z3 = 72xyz
APPEARS IN
RELATED QUESTIONS
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 197 × 203
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Evaluate the following: 109 × 107
Simplify:
(2.5m + 1.5q)2 + (2.5m – 1.5q)2
Using suitable identities, evaluate the following.
52 × 53
Using suitable identities, evaluate the following.
105 × 95
Carry out the following division:
17ab2c3 ÷ (–abc2)
Carry out the following division:
–121p3q3r3 ÷ (–11xy2z3)