Advertisements
Advertisements
प्रश्न
Find the following product: (3x − 4y) (2x − 4y)
उत्तर
Here, we will use the identity \[\left( x - a \right)\left( x - b \right) = x^2 - \left( a + b \right)x + ab\].
\[\left( 3x - 4y \right)\left( 2x - 4y \right)\]
\[ = \left( 4y - 3x \right)\left( 4y - 2x \right) (\text { Taking common - 1 from both parentheses })\]
\[ = \left( 4y \right)^2 - \left( 3x + 2x \right)\left( 4y \right) + 3x \times 2x\]
\[ = 16 y^2 - \left( 12xy + 8xy \right) + 6 x^2 \]
\[ = 16 y^2 - 20xy + 6 x^2\]
APPEARS IN
संबंधित प्रश्न
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Show that `(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2`
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Using suitable identities, evaluate the following.
(52)2
Using suitable identities, evaluate the following.
105 × 95
Carry out the following division:
51x3y2z ÷ 17xyz