Advertisements
Advertisements
प्रश्न
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
उत्तर
(x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
(a + b + c) (a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc .
∴ (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
= x3 + (–2y)3 + (3z)3 – 3(x)(–2y)(3z)
= x3 – 8y3 + 27z3 + 18xyz
APPEARS IN
संबंधित प्रश्न
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: (y2 − 4) (y2 − 3)
Find the following product: (2x2 − 3) (2x2 + 5)
Evaluate the following: 53 × 55
Evaluate the following by using identities:
983
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Expand the following, using suitable identities.
(2x – 5y)(2x – 5y)
Expand the following, using suitable identities.
(x2 + y2)(x2 – y2)