Advertisements
Advertisements
प्रश्न
Simplify: (2a + 3b + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 8ca)
उत्तर
(2a + 36 + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 12bc – 8ca)
We know that
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 × 3 abc
∴ (2a + 36 + 4c)(4a2 + 9b2 + 16 c2 – 6 ab – 12 bc – 8 ca)
= (2a)3 + (3b)3 + (4c)3 – 3 × 2a × 36 × 4c
= 8a3 + 27b3 + 64c3 – 72 abc
APPEARS IN
संबंधित प्रश्न
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Find the value of x, if 14x = (47)2 − (33)2.
Find the following product: (2x2 − 3) (2x2 + 5)
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
2p is the factor of 8pq
Simplify:
(2.5m + 1.5q)2 + (2.5m – 1.5q)2
Simplify:
(pq – qr)2 + 4pq2r
Perform the following division:
(3pqr – 6p2q2r2) ÷ 3pq