Advertisements
Advertisements
प्रश्न
Perform the following division:
(3pqr – 6p2q2r2) ÷ 3pq
उत्तर
We have,
`(3pqr - 6p^2q^2r^2) ÷ 3pq = (3pqr - 6p^2q^2r^2)/(3pq)`
= `(3pqr)/(3pq) - (6p^2q^2r^2)/(3pq)`
= `r - (2 xx 3 xx p xx p xx q xx q xx r xx r)/(3 xx p xx q)`
= r – 2pqr2
APPEARS IN
संबंधित प्रश्न
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Show that `(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2`
Simplify the following using the identities: 1.73 × 1.73 − 0.27 × 0.27
Find the value of x, if 14x = (47)2 − (33)2.
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Simplify:
(4.5a + 1.5b)2 + (4.5b + 1.5a)2
Expand the following, using suitable identities.
`(4/5p + 5/3q)^2`
Carry out the following division:
51x3y2z ÷ 17xyz