Advertisements
Advertisements
Question
Simplify: (2a + 3b + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 8ca)
Solution
(2a + 36 + 4c) (4a2 + 9b2 + 16c2 – 6ab – 12bc – 12bc – 8ca)
We know that
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 × 3 abc
∴ (2a + 36 + 4c)(4a2 + 9b2 + 16 c2 – 6 ab – 12 bc – 8 ca)
= (2a)3 + (3b)3 + (4c)3 – 3 × 2a × 36 × 4c
= 8a3 + 27b3 + 64c3 – 72 abc
APPEARS IN
RELATED QUESTIONS
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: (x + 4) (x + 7)
Find the following product: (3x − 4y) (2x − 4y)
Evaluate the following: 53 × 55
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
Simplify:
(3x + 2y)2 + (3x – 2y)2
Using suitable identities, evaluate the following.
(995)2
Using suitable identities, evaluate the following.
47 × 53
Using suitable identities, evaluate the following.
52 × 53