Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following product: \[95 \times 105\]
\[\because \frac{95 + 105}{2} = \frac{200}{2} = 100\];therefore, we will write the above product as:
\[95 \times 105\]
\[ = \left( 100 + 5 \right)\left( 100 - 5 \right)\]
\[ = \left( 100 \right)^2 - \left( 5 \right)^2 \]
\[ = 10000 - 25\]
\[ = 9975\]
Thus, the answer is 9975.
APPEARS IN
संबंधित प्रश्न
Show that (3x + 7)2 − 84x = (3x − 7)2
Show that (9p - 5q)2 + 180pq = (9p + 5q)2
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 1.8 × 2.2
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the value of x, if 5x = (50)2 − (40)2.
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Expand the following:
(2x + 3y + 4z)2
Simplify:
(4.5a + 1.5b)2 + (4.5b + 1.5a)2
Expand the following, using suitable identities.
(xy + yz)2
Using suitable identities, evaluate the following.
(103)2