Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 1.8 × 2.2
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following product: \[1 . 8 \times 2 . 2\]
\[\because \frac{1 . 8 + 2 . 2}{2} = \frac{4}{2} = 2\]; therefore, we will write the above product as:
\[1 . 8 \times 2 . 2\]
\[ = \left( 2 - 0 . 2 \right)\left( 2 + 0 . 2 \right)\]
\[ = \left( 2 \right)^2 - \left( 0 . 2 \right)^2 \]
\[ = 4 - 0 . 04\]
\[ = 3 . 96\]
Thus, the answer is 3.96.
APPEARS IN
संबंधित प्रश्न
Show that (3x + 7)2 − 84x = (3x − 7)2
Show that (a - b)(a + b) + (b - c) (b + c) + (c - a) (c + a) = 0
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Find the following product: (3x + 5) (3x + 11)
Find the following product: (3x2 − 4xy) (3x2 − 3xy)
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Expand the following, using suitable identities.
`(2/3x - 3/2y)^2`
Expand the following, using suitable identities.
(a2 + b2)2
Expand the following, using suitable identities.
(0.9p – 0.5q)2
Carry out the following division:
17ab2c3 ÷ (–abc2)