Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following expression:
\[\left( 467 \right)^2 - \left( 33 \right)^2 \]
\[ = \left( 467 + 33 \right)\left( 467 - 33 \right)\]
\[ = 500 \times 434\]
\[ = 217000\]
APPEARS IN
संबंधित प्रश्न
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: (y2 − 4) (y2 − 3)
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(2x + 3)(2x – 5)(2x – 6)
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(3x + 2y)2 – (3x – 2y)2
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Using suitable identities, evaluate the following.
105 × 95
Carry out the following division:
17ab2c3 ÷ (–abc2)