Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following product: \[9 . 8 \times 10 . 2\]
\[\because \frac{9 . 8 + 10 . 2}{2} = \frac{20}{2} = 10\]; therefore, we will write the above product as:
\[9 . 8 \times 10 . 2\]
\[ = \left( 10 - 0 . 2 \right)\left( 10 + 0 . 2 \right)\]
\[ = \left( 10 \right)^2 - \left( 0 . 2 \right)^2 \]
\[ = 100 - 0 . 04\]
\[ = 99 . 96\]
Thus, the answer is 99.96.
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (82)2 − (18)2
Simplify the following using the identities: 178 × 178 − 22 × 22
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: (y2 − 4) (y2 − 3)
Expand the following:
(2x + 3y + 4z)2
Expand the following:
(−p + 2q + 3r)2
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
Expand the following, using suitable identities.
(2x + 9)(2x – 7)
Expand the following, using suitable identities.
(x2 + y2)(x2 – y2)
Expand the following, using suitable identities.
(0.9p – 0.5q)2