Advertisements
Advertisements
Question
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Solution
Let us consider the following expression: \[\frac{198 \times 198 - 102 \times 102}{96} = \frac{{198}^2 - {102}^2}{96}\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\],we get:
\[\frac{198 \times 198 - 102 \times 102}{96} = \frac{{198}^2 - {102}^2}{96} = \frac{\left( 198 + 102 \right)\left( 198 - 102 \right)}{96}\]
\[\Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = \frac{\left( 198 + 102 \right)\left( 198 - 102 \right)}{96}\]
\[ \Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = \frac{300 \times 96}{96}\]
\[ \Rightarrow \frac{198 \times 198 - 102 \times 102}{96} = 300\]
Thus, the answer is 300.
APPEARS IN
RELATED QUESTIONS
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Simplify the following using the identities: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726}\]
Find the following product: (z2 + 2) (z2 − 3)
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
Evaluate the following by using identities:
983
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Simplify:
(2.5m + 1.5q)2 + (2.5m – 1.5q)2
Simplify:
(s2t + tq2)2 – (2stq)2
Expand the following, using suitable identities.
(7x + 5)2