Advertisements
Advertisements
Question
Simplify the following using the identities: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726}\]
Solution
Let us consider the following expression: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{8 . {63}^2 - 1 . {37}^2}{0 . 726}\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] we get:
\[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{8 . {63}^2 - 1 . {37}^2}{0 . 726} = \frac{\left( 8 . 63 + 1 . 37 \right)\left( 8 . 63 - 1 . 37 \right)}{0 . 726}\]
\[\Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{\left( 8 . 63 + 1 . 37 \right)\left( 8 . 63 - 1 . 37 \right)}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{\left( 8 . 63 + 1 . 37 \right)\left( 8 . 63 - 1 . 37 \right)}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{10 \times 7 . 26}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{10 \times {7 . 26}^{10}}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = 100\]
Thus, the answer is 100.
APPEARS IN
RELATED QUESTIONS
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 1.8 × 2.2
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: \[\left( x + \frac{1}{5} \right)(x + 5)\]
Expand the following:
(2x + 3y + 4z)2
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
By using identity evaluate the following:
73 – 103 + 33
On dividing 57p2qr by 114pq, we get ______.
Using suitable identities, evaluate the following.
(1005)2