Advertisements
Advertisements
प्रश्न
Simplify the following using the identities: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726}\]
उत्तर
Let us consider the following expression: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{8 . {63}^2 - 1 . {37}^2}{0 . 726}\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] we get:
\[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{8 . {63}^2 - 1 . {37}^2}{0 . 726} = \frac{\left( 8 . 63 + 1 . 37 \right)\left( 8 . 63 - 1 . 37 \right)}{0 . 726}\]
\[\Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{\left( 8 . 63 + 1 . 37 \right)\left( 8 . 63 - 1 . 37 \right)}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{\left( 8 . 63 + 1 . 37 \right)\left( 8 . 63 - 1 . 37 \right)}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{10 \times 7 . 26}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = \frac{10 \times {7 . 26}^{10}}{0 . 726}\]
\[ \Rightarrow \frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726} = 100\]
Thus, the answer is 100.
APPEARS IN
संबंधित प्रश्न
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Find the following product: (x − 11) (x + 4)
Evaluate the following by using identities:
983
Multiply the following:
(3x2 + 4x – 8), (2x2 – 4x + 3)
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(x2 – 4) + (x2 + 4) + 16
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Carry out the following division:
–121p3q3r3 ÷ (–11xy2z3)
Perform the following division:
(x3y3 + x2y3 – xy4 + xy) ÷ xy