Advertisements
Advertisements
प्रश्न
Perform the following division:
(x3y3 + x2y3 – xy4 + xy) ÷ xy
उत्तर
We have,
(x3y3 + x2y3 – xy4 + xy) ÷ xy
= `(x^3y^3 + x^2y^3 - xy^4 + xy)/(xy)`
= `(x^3y^3)/(xy) + (x^2y^3)/(xy) - (xy^4)/(xy) + (xy)/(xy)`
= `(x xx x xx x xx y xx y xx y)/(x xx y) + (x xx x xx y xx y xx y)/(x xx y) - (x xx y xx y xx y xx y)/(x xx y) + ( x xx y)/(x xx y)`
= x2y2 + xy2 – y3 + 1
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 197 × 203
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Find the following product: (2x2 − 3) (2x2 + 5)
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Simplify:
(x2 – 4) + (x2 + 4) + 16
Expand the following, using suitable identities.
(x2 + y2)(x2 – y2)
Using suitable identities, evaluate the following.
105 × 95
Carry out the following division:
51x3y2z ÷ 17xyz
Perform the following division:
(ax3 – bx2 + cx) ÷ (– dx)