Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (79)2 − (69)2
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following expression:
\[\left( 79 \right)^2 - \left( 69 \right)^2 \]
\[ = \left( 79 + 69 \right)\left( 79 - 69 \right)\]
\[ = 148 \times 10\]
\[ = 1480\]
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: (x − 11) (x + 4)
Find the following product: (3x + 5) (3x + 11)
Evaluate the following by using identities:
983
2p is the factor of 8pq
On dividing p(4p2 – 16) by 4p(p – 2), we get ______.
Simplify:
(2.5m + 1.5q)2 + (2.5m – 1.5q)2
Expand the following, using suitable identities.
(7x + 5)2
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |