हिंदी

RD Sharma solutions for Mathematics [English] Class 8 chapter 2 - Powers [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 8 chapter 2 - Powers - Shaalaa.com
Advertisements

Solutions for Chapter 2: Powers

Below listed, you can find solutions for Chapter 2 of CBSE RD Sharma for Mathematics [English] Class 8.


Exercise 2.1Exercise 2.2Exercise 2.3Exercise 2.4
Exercise 2.1 [Page 8]

RD Sharma solutions for Mathematics [English] Class 8 2 Powers Exercise 2.1 [Page 8]

Exercise 2.1 | Q 1.1 | Page 8

Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.

 2−3

 

Exercise 2.1 | Q 1.2 | Page 8

Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0. (−4)−2

Exercise 2.1 | Q 1.3 | Page 8

Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.

\[\frac{1}{3^{- 2}}\]

 

Exercise 2.1 | Q 1.4 | Page 8

Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.

\[\left( \frac{1}{2} \right)^{- 5}\]

 

Exercise 2.1 | Q 1.5 | Page 8

Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.

\[\left( \frac{2}{3} \right)^{- 2}\]
Exercise 2.1 | Q 2.1 | Page 8

Find the value of the following:
 3−1 + 4−1

Exercise 2.1 | Q 2.2 | Page 8

Find the value of the following:
(30 + 4−1) × 22

Exercise 2.1 | Q 2.3 | Page 8

Find the value of the following:
(3−1 + 4−1 + 5−1)0

Exercise 2.1 | Q 2.4 | Page 8

Find the value of the following:
\[\left\{ \left( \frac{1}{3} \right)^{- 1} - \left( \frac{1}{4} \right)^{- 1} \right\}^{- 1}\]

 

Exercise 2.1 | Q 3.1 | Page 8

Find the value of the following:

\[\left( \frac{1}{2} \right)^{- 1} + \left( \frac{1}{3} \right)^{- 1} + \left( \frac{1}{4} \right)^{- 1}\]

Exercise 2.1 | Q 3.2 | Page 8

Find the value of the following:

\[\left( \frac{1}{2} \right)^{- 2} + \left( \frac{1}{3} \right)^{- 2} + \left( \frac{1}{4} \right)^{- 2}\]
Exercise 2.1 | Q 3.3 | Page 8

Find the value of the following:

 (2−1 × 4−1) ÷ 2−2
Exercise 2.1 | Q 3.4 | Page 8

Find the value of the following:

(5−1 × 2−1) ÷ 6−1
Exercise 2.1 | Q 4.1 | Page 8

Simplify:

\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Exercise 2.1 | Q 4.2 | Page 8

Simplify:

\[\left( 5^{- 1} \div 6^{- 1} \right)^3\]

 

Exercise 2.1 | Q 4.3 | Page 8

Simplify:

\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Exercise 2.1 | Q 4.4 | Page 8

Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]

Exercise 2.1 | Q 5.1 | Page 8

Simplify:

\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
Exercise 2.1 | Q 5.2 | Page 8

Simplify:

\[\left( 3^2 - 2^2 \right) \times \left( \frac{2}{3} \right)^{- 3}\]
Exercise 2.1 | Q 5.3 | Page 8

Simplify:

\[\left[ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right] \div \left( \frac{1}{4} \right)^{- 3}\]
Exercise 2.1 | Q 5.4 | Page 8

Simplify:

\[\left( 2^2 + 3^2 - 4^2 \right) \div \left( \frac{3}{2} \right)^2\]
Exercise 2.1 | Q 6 | Page 8

By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?

Exercise 2.1 | Q 7 | Page 8

By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( - \frac{4}{7} \right)^{- 1} ?\]

Exercise 2.1 | Q 8 | Page 8

By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?

 
Exercise 2.2 [Pages 18 - 19]

RD Sharma solutions for Mathematics [English] Class 8 2 Powers Exercise 2.2 [Pages 18 - 19]

Exercise 2.2 | Q 1.1 | Page 18

Write the following in exponential form:

\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Exercise 2.2 | Q 1.2 | Page 18

Write the following in exponential form:

\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]

Exercise 2.2 | Q 2.1 | Page 18

Evaluate:
5−2

Exercise 2.2 | Q 2.2 | Page 18

Evaluate:
(−3)−2

Exercise 2.2 | Q 2.3 | Page 18

Evaluate:
\[\left( \frac{1}{3} \right)^{- 4}\]

 

Exercise 2.2 | Q 2.4 | Page 18

Evaluate:
\[\left( \frac{- 1}{2} \right)^{- 1}\]

Exercise 2.2 | Q 3.1 | Page 18

Express the following as a rational number in the form \[\frac{p}{q}:\]

6−1

Exercise 2.2 | Q 3.2 | Page 18

Express the following as a rational number in the form \[\frac{p}{q}:\]

(−7)−1

Exercise 2.2 | Q 3.3 | Page 18

Express the following as a rational number in the form \[\frac{p}{q}:\]

\[\left( \frac{1}{4} \right)^{- 1}\]
Exercise 2.2 | Q 3.4 | Page 18

Express the following as a rational number in the form \[\frac{p}{q}:\]

\[( - 4 )^{- 1} \times \left( \frac{- 3}{2} \right)^{- 1}\]
Exercise 2.2 | Q 3.5 | Page 18

Express the following as a rational number in the form \[\frac{p}{q}:\]

\[\left( \frac{3}{5} \right)^{- 1} \times \left( \frac{5}{2} \right)^{- 1}\]
Exercise 2.2 | Q 4.1 | Page 18

Simplify:
\[\left\{ 4^{- 1} \times 3^{- 1} \right\}^2\]

Exercise 2.2 | Q 4.2 | Page 18

Simplify:
\[\left\{ 5^{- 1} \div 6^{- 1} \right\}^3\]

Exercise 2.2 | Q 4.3 | Page 18

Simplify:

\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Exercise 2.2 | Q 4.4 | Page 18

Simplify:

\[\left\{ 3^{- 1} \times 4^{- 1} \right\}^{- 1} \times 5^{- 1}\]

Exercise 2.2 | Q 4.5 | Page 18

Simplify:

\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]

Exercise 2.2 | Q 5.1 | Page 18

Express the following rational numbers with a negative exponent:

\[\left( \frac{1}{4} \right)^3\]
Exercise 2.2 | Q 5.2 | Page 18

Express the following rational numbers with a negative exponent:

\[3^5\]
Exercise 2.2 | Q 5.3 | Page 18

Express the following rational numbers with a negative exponent:

\[\left( \frac{3}{5} \right)^4\]
Exercise 2.2 | Q 5.4 | Page 18

Express the following rational numbers with a negative exponent:

\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 3}\]
Exercise 2.2 | Q 5.5 | Page 18

Express the following rational numbers with a negative exponent:

\[\left\{ \left( \frac{7}{3} \right)^4 \right\}^{- 3}\]
Exercise 2.2 | Q 6.1 | Page 19

Express the following rational numbers with a positive exponent:

\[\left( \frac{3}{4} \right)^{- 2}\]
Exercise 2.2 | Q 6.2 | Page 19

Express the following rational numbers with a positive exponent:

\[\left( \frac{5}{4} \right)^{- 3}\]
Exercise 2.2 | Q 6.3 | Page 19

Express the following rational numbers with a positive exponent:

\[4^3 \times 4^{- 9}\]
Exercise 2.2 | Q 6.4 | Page 19

Express the following rational numbers with a positive exponent:

\[\left\{ \left( \frac{4}{3} \right)^{- 3} \right\}^{- 4}\]
Exercise 2.2 | Q 6.5 | Page 19

Express the following rational numbers with a positive exponent:

\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 2}\]
Exercise 2.2 | Q 7.1 | Page 19

Simplify:

\[\left\{ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right\} \div \left( \frac{1}{4} \right)^{- 3}\]
Exercise 2.2 | Q 7.2 | Page 19

Simplify:

\[\left( 3^2 - 2^2 \right) \times \left( \frac{2}{3} \right)^{- 3}\]
Exercise 2.2 | Q 7.3 | Page 19

Simplify:

\[\left\{ \left( \frac{1}{2} \right)^{- 1} \times ( - 4 )^{- 1} \right\}^{- 1}\]
Exercise 2.2 | Q 7.4 | Page 19

Simplify:

\[\left[ \left\{ \left( \frac{- 1}{4} \right)^2 \right\}^{- 2} \right]^{- 1}\]
Exercise 2.2 | Q 7.5 | Page 19

Simplify:

\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
Exercise 2.2 | Q 8 | Page 19

By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?

 
Exercise 2.2 | Q 9 | Page 19

By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( \frac{- 4}{7} \right)^{- 1} ?\]

Exercise 2.2 | Q 10 | Page 19

By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?

Exercise 2.2 | Q 11 | Page 19

By what number should \[\left( \frac{5}{3} \right)^{- 2}\] be multiplied so that the product may be \[\left( \frac{7}{3} \right)^{- 1} ?\]

Exercise 2.2 | Q 12.1 | Page 19

Find x, if \[\left( \frac{1}{4} \right)^{- 4} \times \left( \frac{1}{4} \right)^{- 8} = \left( \frac{1}{4} \right)^{- 4x}\]

 

Exercise 2.2 | Q 12.2 | Page 19

Find x, if
\[\left( \frac{- 1}{2} \right)^{- 19} \times \left( \frac{- 1}{2} \right)^8 = \left( \frac{- 1}{2} \right)^{- 2x + 1}\]

Exercise 2.2 | Q 12.3 | Page 19

Find x, if

\[\left( \frac{3}{2} \right)^{- 3} \times \left( \frac{3}{2} \right)^5 = \left( \frac{3}{2} \right)^{2x + 1}\]
Exercise 2.2 | Q 12.4 | Page 19

Find x, if

\[\left( \frac{2}{5} \right)^{- 3} \times \left( \frac{2}{5} \right)^{15} = \left( \frac{2}{5} \right)^{2 + 3x}\]
Exercise 2.2 | Q 12.5 | Page 19

Find x, if

\[\left( \frac{5}{4} \right)^{- x} \div \left( \frac{5}{4} \right)^{- 4} = \left( \frac{5}{4} \right)^5\]
Exercise 2.2 | Q 12.6 | Page 19

Find x, if

\[\left( \frac{8}{3} \right)^{2x + 1} \times \left( \frac{8}{3} \right)^5 = \left( \frac{8}{3} \right)^{x + 2}\]
Exercise 2.2 | Q 13.1 | Page 19

if \[x = \left( \frac{3}{2} \right)^2 \times \left( \frac{2}{3} \right)^{- 4}\], find the value of x−2.

Exercise 2.2 | Q 13.2 | Page 19

If \[x = \left( \frac{4}{5} \right)^{- 2} \div \left( \frac{1}{4} \right)^2\], find the value of x−1.

Exercise 2.2 | Q 14 | Page 19

Find the value of x for which 52x ÷ 5−3 = 55.

Exercise 2.3 [Page 22]

RD Sharma solutions for Mathematics [English] Class 8 2 Powers Exercise 2.3 [Page 22]

Exercise 2.3 | Q 1.1 | Page 22

Express the following numbers in standard form:
6020000000000000

Exercise 2.3 | Q 1.2 | Page 22

Express the following numbers in standard form:
0.00000000000943

Exercise 2.3 | Q 1.3 | Page 22

Express the following numbers in standard form:
0.00000000085

Exercise 2.3 | Q 1.4 | Page 22

Express the following numbers in standard form:
846 × 107

Exercise 2.3 | Q 1.5 | Page 22

Express the following numbers in standard form:
3759 × 10−4

Exercise 2.3 | Q 1.6 | Page 22

Express the following numbers in standard form:
0.00072984

Exercise 2.3 | Q 1.7 | Page 22

Express the following numbers in standard form:
0.000437 × 104

Exercise 2.3 | Q 1.8 | Page 22

Express the following numbers in standard form:
4 ÷ 100000

Exercise 2.3 | Q 2.1 | Page 22

Write the following numbers in the usual form:
4.83 × 107

Exercise 2.3 | Q 2.2 | Page 22

Write the following numbers in the usual form:
3.02 × 10−6

Exercise 2.3 | Q 2.3 | Page 22

Write the following numbers in the usual form:
4.5 × 104

Exercise 2.3 | Q 2.4 | Page 22

Write the following numbers in the usual form:
3 × 10−8

Exercise 2.3 | Q 2.5 | Page 22

Write the following numbers in the usual form:
1.0001 × 109

Exercise 2.3 | Q 2.6 | Page 22

Write the following numbers in the usual form:
5.8 × 102

Exercise 2.3 | Q 2.7 | Page 22

Write the following numbers in the usual form:
3.61492 × 106

Exercise 2.3 | Q 2.8 | Page 22

Write the following numbers in the usual form:
3.25 × 10−7

Exercise 2.4 [Pages 22 - 24]

RD Sharma solutions for Mathematics [English] Class 8 2 Powers Exercise 2.4 [Pages 22 - 24]

Exercise 2.4 | Q 1 | Page 22

Square of \[\left( \frac{- 2}{3} \right)\] is

 
  • \[- \frac{2}{3}\]

     

  • \[\frac{2}{3}\]

     

  • \[- \frac{4}{9}\]

     

  • \[\frac{4}{9}\]

     

Exercise 2.4 | Q 2 | Page 22

Cube of \[\frac{- 1}{2}\] is

 
  • \[\frac{1}{8}\]

     

  • \[\frac{1}{16}\]

     

  • \[- \frac{1}{8}\]

     

  • \[\frac{- 1}{16}\]

     

Exercise 2.4 | Q 3 | Page 23

Which of the following is not equal to \[\left( \frac{- 3}{5} \right)^4 ?\]

  • \[\frac{( - 3 )^4}{5^4}\]

     

  • \[\frac{3^4}{( - 5 )^4}\]

     

  • \[- \frac{3^4}{5^4}\]

     

  • \[\frac{- 3}{5} \times \frac{- 3}{5} \times \frac{- 3}{5} \times \frac{- 3}{5}\]

     

Exercise 2.4 | Q 4 | Page 23

Which  of the following is not reciprocal of \[\left( \frac{2}{3} \right)^4 ?\]

  • \[\left( \frac{3}{2} \right)^4\]

     

  • \[\left( \frac{2}{3} \right)^{- 4}\]

     

  • \[\left( \frac{3}{2} \right)^{- 4}\]

     

  • \[\frac{3^4}{2^4}\]

     

Exercise 2.4 | Q 5 | Page 23

Which of the following numbers is not equal to \[\frac{- 8}{27}?\]
(a) \[\left( \frac{2}{3} \right)^{- 3}\]

(b) \[- \left( \frac{2}{3} \right)^3\]

(c) \[\left( - \frac{2}{3} \right)^3\]

(d) \[\left( \frac{- 2}{3} \right) \times \left( \frac{- 2}{3} \right) \times \left( \frac{- 2}{3} \right)\]

Exercise 2.4 | Q 6 | Page 23
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
  • \[\left( \frac{- 2}{3} \right)^5\]

     

  • \[\left( \frac{3}{2} \right)^5\]
  • \[\frac{2x - 5}{3}\]
  • \[\frac{2x - 5}{3}\]
Exercise 2.4 | Q 7 | Page 23
\[\left( \frac{- 1}{2} \right)^5 \times \left( \frac{- 1}{2} \right)^3\] is equal to
  • \[\left( \frac{- 1}{2} \right)^8\]

     

  • \[- \left( \frac{1}{2} \right)^8\]

     

  • \[\left( \frac{1}{4} \right)^8\]

     

  • \[\left( - \frac{1}{2} \right)^{15}\]

     

Exercise 2.4 | Q 8 | Page 23
\[\left( \frac{- 1}{5} \right)^3 \div \left( \frac{- 1}{5} \right)^8\]  is equal to
  • \[\left( - \frac{1}{5} \right)^5\]

     

  • \[\left( - \frac{1}{5} \right)^{11}\]

     

  • \[( - 5 )^5\]

     

  • \[\left( \frac{1}{5} \right)^5\]

     

Exercise 2.4 | Q 9 | Page 23
\[\left( \frac{- 2}{5} \right)^7 \div \left( \frac{- 2}{5} \right)^5\] is equal to
  • \[\frac{4}{25}\]

     

  • \[\frac{- 4}{25}\]

     

  • \[\left( \frac{- 2}{5} \right)^{12}\]

     

  • \[\frac{25}{4}\]

     

Exercise 2.4 | Q 10 | Page 23
\[\left\{ \left( \frac{1}{3} \right)^2 \right\}^4\] is equal to
  • \[\left( \frac{1}{3} \right)^6\]

  • \[\left( \frac{1}{3} \right)^8\]

     

  • \[\left( \frac{1}{3} \right)^{24}\]

     

  • \[\left( \frac{1}{3} \right)^{16}\]

     

Exercise 2.4 | Q 11 | Page 24
\[\left( \frac{1}{5} \right)^0\]  is equal to
  • 0

  • \[\frac{1}{5}\]

     

  • 1

  • 5

Exercise 2.4 | Q 12 | Page 24
\[\left( \frac{- 3}{2} \right)^{- 1}\] is equal to

 

  • \[\frac{2}{3}\]

     

  • \[- \frac{2}{3}\]

     

  • \[\frac{3}{2}\]

     

  • none of these

Exercise 2.4 | Q 13 | Page 24
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
  • \[\left( \frac{2}{3} \times \frac{5}{7} \right)^{- 10}\]

     

  • \[\left( \frac{2}{3} \times \frac{5}{7} \right)^{- 5}\]

     

  • \[\left( \frac{2}{3} \times \frac{5}{7} \right)^{25}\]

     

  • \[\left( \frac{2}{3} \times \frac{5}{7} \right)^{- 25}\]

     

Exercise 2.4 | Q 14 | Page 24

\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to

  • \[\left( \frac{3}{4} \div \frac{5}{3} \right)^5\]

     

  • `(4/3div3/5)^5`

  • `(5/3div4/3)^3`

  • `(3/5div3/4)^3`

Exercise 2.4 | Q 15 | Page 24

For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to

  • (a ÷ b)1

  •  (a ÷ b)0

  • (a ÷ b)4

  • (a ÷ b)8

Exercise 2.4 | Q 16 | Page 24

For any two rational numbers a and b, a5 × b5 is equal to 

  •  (a × b)0

  • (a × b)10

  • (a × b)5

  •  (a × b)25

Exercise 2.4 | Q 17 | Page 24

For a non-zero rational number a, a7 ÷ a12 is equal to

  •  a5

  • a−19

  • a−5

  • a19

Exercise 2.4 | Q 18 | Page 24

For a non zero rational number a, (a3)−2 is equal to

  •  a9

  • a−6

  • a−9

  • a1

Solutions for 2: Powers

Exercise 2.1Exercise 2.2Exercise 2.3Exercise 2.4
RD Sharma solutions for Mathematics [English] Class 8 chapter 2 - Powers - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 8 chapter 2 - Powers

Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 8 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 8 CBSE 2 (Powers) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 8 chapter 2 Powers are Powers with Negative Exponents, Use of Exponents to Express Small Numbers in Standard Form, Comparing Very Large and Very Small Numbers, Concept of Exponents, Decimal Number System Using Exponents and Powers, Negative Exponents and Laws of Exponents.

Using RD Sharma Mathematics [English] Class 8 solutions Powers exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 8 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 2, Powers Mathematics [English] Class 8 additional questions for Mathematics Mathematics [English] Class 8 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×