Advertisements
Advertisements
प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\left( \frac{1}{2} \right)^{- 5}\]
योग
उत्तर
We know that
\[a^{- n} = \frac{1}{a^n}\]
`(1/2)^(-5)=2^5=32`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find the value of (3−1 + 4−1 + 5−1)0
Find the value of m for which 5m ÷5−3 = 55.
Find the value of the following:
(30 + 4−1) × 22
Write the following in exponential form:
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Simplify:
\[\left\{ 3^{- 1} \times 4^{- 1} \right\}^{- 1} \times 5^{- 1}\]
Find x, if
\[\left( \frac{2}{5} \right)^{- 3} \times \left( \frac{2}{5} \right)^{15} = \left( \frac{2}{5} \right)^{2 + 3x}\]
Find x, if
\[\left( \frac{5}{4} \right)^{- x} \div \left( \frac{5}{4} \right)^{- 4} = \left( \frac{5}{4} \right)^5\]
Find x, if
\[\left( \frac{8}{3} \right)^{2x + 1} \times \left( \frac{8}{3} \right)^5 = \left( \frac{8}{3} \right)^{x + 2}\]
Cube of \[\frac{- 1}{2}\] is
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to