Advertisements
Advertisements
प्रश्न
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
विकल्प
- \[\left( \frac{- 2}{3} \right)^5\]
- \[\left( \frac{3}{2} \right)^5\]
- \[\frac{2x - 5}{3}\]
- \[\frac{2x - 5}{3}\]
MCQ
योग
उत्तर
\[\left( \frac{3}{2} \right)^5\]
Rearrange (2/3)−5 to get a positive exponent.
\[\left( \frac{2}{3} \right)^{- 5} = \frac{1}{\left( \frac{2}{3} \right)^5} \left( a^{- n} = \frac{1}{a^n} \right)\]
\[ = \frac{1}{\frac{2^5}{3^5}} \left\{ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \right\}\]
\[ = \frac{3^5}{2^5}\]
\[ = \left( \frac{3}{2} \right)^5\]
Rearrange (2/3)−5 to get a positive exponent.
\[\left( \frac{2}{3} \right)^{- 5} = \frac{1}{\left( \frac{2}{3} \right)^5} \left( a^{- n} = \frac{1}{a^n} \right)\]
\[ = \frac{1}{\frac{2^5}{3^5}} \left\{ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \right\}\]
\[ = \frac{3^5}{2^5}\]
\[ = \left( \frac{3}{2} \right)^5\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify and express the result in power notation with positive exponent.
(−4)5 ÷ (−4)8
Simplify and express the result in power notation with positive exponent.
`(1/2^3)^2`
Find the value of `{((-2)/3)^(-2)}^2`
Evaluate.
`{(1/3)^(-1) - (1/4)^(-1)}^(-1)`
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\left( \frac{1}{2} \right)^{- 5}\]
By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?
Express the following rational numbers with a negative exponent:
\[\left( \frac{1}{4} \right)^3\]
By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?
Evaluate.
(5−1 × 2−1))× 6−1
The multiplicative inverse of 10–100 is ______.