Advertisements
Advertisements
Question
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
Options
- \[\left( \frac{- 2}{3} \right)^5\]
- \[\left( \frac{3}{2} \right)^5\]
- \[\frac{2x - 5}{3}\]
- \[\frac{2x - 5}{3}\]
MCQ
Sum
Solution
\[\left( \frac{3}{2} \right)^5\]
Rearrange (2/3)−5 to get a positive exponent.
\[\left( \frac{2}{3} \right)^{- 5} = \frac{1}{\left( \frac{2}{3} \right)^5} \left( a^{- n} = \frac{1}{a^n} \right)\]
\[ = \frac{1}{\frac{2^5}{3^5}} \left\{ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \right\}\]
\[ = \frac{3^5}{2^5}\]
\[ = \left( \frac{3}{2} \right)^5\]
Rearrange (2/3)−5 to get a positive exponent.
\[\left( \frac{2}{3} \right)^{- 5} = \frac{1}{\left( \frac{2}{3} \right)^5} \left( a^{- n} = \frac{1}{a^n} \right)\]
\[ = \frac{1}{\frac{2^5}{3^5}} \left\{ \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \right\}\]
\[ = \frac{3^5}{2^5}\]
\[ = \left( \frac{3}{2} \right)^5\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify and express the result in power notation with positive exponent.
(−4)5 ÷ (−4)8
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0. (−4)−2
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Write the following in exponential form:
\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]
Evaluate:
5−2
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
Simplify:
\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
Find the multiplicative inverse of the following.
2– 4
The multiplicative inverse of `(- 5/9)^99` is ______.