Advertisements
Advertisements
Question
Simplify:
\[\left( 2^{- 1} + 3^{- 1} \right)^{- 1}\]
Sum
Solution
\[( 2^{- 1} + 3^{- 1} )^{- 1} = \left( \frac{1}{2} + \frac{1}{3} \right)^{- 1}\]
=\[\left( \frac{5}{6} \right)^{- 1}\]
\[= \frac{1}{5/6}\] → (a−1 = 1/a)
\[= \frac{6}{5}\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Evaluate.
(−4)−2
Simplify:
\[\left( 5^{- 1} \div 6^{- 1} \right)^3\]
Simplify:
\[\left[ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right] \div \left( \frac{1}{4} \right)^{- 3}\]
Write the following in exponential form:
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Express the following as a rational number in the form \[\frac{p}{q}:\]
\[\left( \frac{1}{4} \right)^{- 1}\]
Express the following rational numbers with a negative exponent:
\[3^5\]
Express the following rational numbers with a negative exponent:
\[\left( \frac{3}{5} \right)^4\]
Cube of \[\frac{- 1}{2}\] is
\[\left( \frac{1}{5} \right)^0\] is equal to
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`