Advertisements
Advertisements
Question
Simplify and express the result in power notation with positive exponent.
`(−3)^4 × (5/3)^4`
Simplify
Solution
`(−3)^4 × (5/3)^4`
= `(-1)^4 xx (3)^4 xx (5)^4/(3)^4`
= `3^4/3^4 xx 5^4`
= `3^(4-4) xx 5^4`
= 30 × 54 ...`[∵ a^m/a^n = a^(m-n)]`
= 1 × 54
= (5)4
shaalaa.com
Is there an error in this question or solution?
RELATED QUESTIONS
Evaluate.
(−4)−2
Simplify:
\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Simplify:
\[\left( 5^{- 1} \div 6^{- 1} \right)^3\]
Write the following in exponential form:
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Simplify:
\[\left[ \left\{ \left( \frac{- 1}{4} \right)^2 \right\}^{- 2} \right]^{- 1}\]
Simplify:
\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
\[\left\{ \left( \frac{1}{3} \right)^2 \right\}^4\] is equal to
\[\left( \frac{- 3}{2} \right)^{- 1}\] is equal to
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
Simplify and express the result in power notation with positive exponent.
(3−7 ÷ 3−10) × 3−5